Здравствуйте, гость ( Авторизация | Регистрация )


-
 
Ответить в данную темуНачать новую тему
диагностика, принцип работы инжектора и поиск неисправностей., статьи, советы специалистов.


Спасибо сказали:
Шустрый
сообщение 30.1.2015, 12:37
Сообщение #1



Завсегдатель
*****

Группа: Активные пользователи
Сообщений: 5706
Регистрация: 11.3.2011
Возраст: 53
Обратиться по нику
Цитата
Пользователь №: 1215
Спасибо сказали: 1901 раз(а)


0082
Предупреждения:
(0%) -----

Репутация:   35  


В этой теме можно собрать статьи и основные советы по частым неисправностям в помощь новичкам.
Описание может быть и о других машинах, но принцип тот же, неисправности подобны. Может быть полезно.

Например:http://sto.1gb.ua/tunning/tunn1.php
Проверка Датчиков и ИМ

Прежде чем влазить в дебри электронной системы управления двигателем (ЭСУД) убедитесь, что проблема именно в ней. Если двигатель попрежнему содержит четыре поршня, восемь(или шестнадцать) клапанов и зазор в них в норме, компрессия в норме, куда-то не испарился ремень газораспределения, генератор выдаёт положеные ему 14.4 Вольт, вот тогда можно начинать грешить на ЭСУД. И конечно-же лампа Check Engine, расположеная на панели приборов - если она загорелась, то с ЭСУД точно что-то не в порядке, и в память контроллера блока управления занесен код неисправности.
Вообще, диагностика и ремонт инжекторных систем требует специального оборудования(такого как диагностические тестеры,программы диагностики для персонального компьютера, всевозможные пробники, манометр для измерения давления топлива, разрядник и т.д.) и специальной подготовки - по крайней мере нужно чётко представлять себе теорию работы система впрыска. Цель данного раздела рассказать, что можно сделать самому, не имея спецоборудования, так сказать в гаражных условиях. Сразу оговоримся, что речь здесь пойдёт о инжекторных системах автомобилей ВАЗ. Газовский впрыск отличается только конструкцией датчиков, исполнительных механизмов и наличием датчика температуры воздуха, а принцип работы единый.
Важная рекомендация перед началом ремонтных работ с ЭСУД-выключайте зажигание всегда,когда снимаете разъёмы с датчиков,исполнительных механизмов и уж тем более с контроллера!
Итак, по порядку. Как следует из теории ЭСУД содержит: собственно контроллер (электронный блок управления-ЭБУ), который управляет исполнительными механизмами(ИМ) получая сигналы с датчиков.
К исполнительным механизмам относятся: электробензонасос (ЭБН), регулятор давления топлива, модуль зажигания (МЗ), регулятого холостого хода (РХХ), форсунки, электровентилятор, свечи зажигания.
Датчиков всего восемь:
датчик положения дроссельной заслонки(ДПДЗ),
датчик детонации(ДД),
датчик положения коленвала(ДПК),
датчик массового расхода воздуха(ДМРВ),
датчик скорости(ДС),
датчик температуры охлаждающей жидкости(ДТОЖ),
датчик фаз(ДФ),
датчик кислорода(ДК).
Причём два последних отсутствуют у 8-ми клаппанного двигателя без катализатора, последний отсутствует у 16-ти клаппанного двигателя без катализатора, и предпоследний отсутствует у 8-ми клаппанного двигателя с катализатором.
Итак, о количестве клапанов, наличие катализатора у Вашего двигателя Вы узнали уже давно(при покупке).Это важно, т.к. следует из выше сказаного искать датчик фаз на 8-ми клапанном двигателе можно долго. Прежде чем начнём излагать - общая рекомендация по поиску неисправности для всех исполнительных механизмов и датчиков да и вообще всей ЭСУД. Вся эта "ботва" соединена между собой проводами. Соединение характеризуется двумя стабильными состояниями: есть контакт или нет контакта.Существует ещё третье нестабильное состояние-плохой контакт.Так проверяйте в первую очередь целостность проводов и наличие контактов-это может избавить Вас от ненужной работы и сэкономит время.
Начнём с исполнительных механизмов.

Электробензонасос. Проверять его необходимо в первую очередь, если двигатель прокручивается, но не заводиться. При включении зажигания должно быть слышно характерное жужжание в районе бензобака. Если нет-проверить его работоспособность можно подав +12 Вольт проводом при выключеном зажигании на контакт G колодки диагностики желательно через предохранитель. Жужание и сейчас отсутствует - ЭБН умер, либо повреждена проводка. Если же заработал -то либо контроллер невключает реле ЭБН, либо невключается само реле ЭБН. В первом случае без спецоборудования не обойтись, во втором случае нужно сменить реле.
В системе применяется бензонасос турбинного типа. Насос обеспечивает подачу топлива под давлением 284 кПа из топливного бака через магистральный топливный фильтр на рампу форсунок. Избыток топлива сверх регулируемого давления возвращается в бензобак по отдельной линии слива. Электробензонасос включается контроллером с помощью вспомогательного реле. При установке ключа зажигания в положение ЗАЖИГАНИЕ или СТАРТЕР после пребывания в положении ВЫКЛЮЧЕНО, контроллер сразу запитывает реле включения бензонасос. В результате быстро создаётся нужное давление топлива. Если в течение трёх секунд прокрутка двигателя не начинается, контроллер выключает реле и ожидает начало прокрутки. После её начала контроллер определяет вращение по опорному сигналу датчика положения коленчатого вала и вновь включает реле, обеспечивая включение бензонасоса. Бензонасосы бывают двух типов: с маркой GM или BOSCH. Для системы GM: Не допускайте работу бензонасоса без бензина, от этого он выходит из строя. Старайтесь, чтобы в топливном баке оставалось не менее 5 литров бензина.

Регулятор давления топлива. Контроллер им непосредственно не управляет, но он входит в систему подачи топлива. Его функция заключается в поддержании постоянного перепада давления на форсунках.Этот узел не ремонтируется и без спецоборудования сделать ему диагностику трудно.Можно проверить целостность мембраны РДТ,разделяющей вакуумную и топливную полости.Снимите трубку идущую от РДТ к ресиверу,со штуцера ввёрнутого в ресивер,потрясите её.Если из трубки не пахнет и уж тем более не капает бензин,то мембрана РДТ целая.
РДТ расположен на рампе форсунок и для своей работы использует разряжение в ресивере. Существует несколько разновидностей РДТ. Регулятор представляет собой мембранный предохранительный клапан. На диафрагму регулятора с одной стороны действует давление топлива, а с другой - давление пружины регулятора и давление (разрежение) во впускной трубе. Регулятор поддерживает постоянный перепад давления (по отношению к давлению во впускной трубе) на форсунках. При увеличении нагрузки на двигатель (при росте давления во впускном трубопроводе) регулятор увеличивает давление топлива в топливной рампе, при уменьшении нагрузки - регулятор уменьшает давление топлива. При снижении давления в топливной рампе пружина регулятора давления прижимает диафрагму и клапан к седлу клапана, в результате чего слив топлива в бензобак прекращается и создаются условия для увеличения давления на входе. Когда давление топлива превысит усилие пружины регулятора давления, клапан открывается для сброса избытка топлива в линию слива. При включенном зажигании, неработающем двигателе и работающем электробензонасосе регулятор поддерживает давление в топливной рампе в пределах от 280 до 320 кПа (от 2,8 до 3,2 кгс/см2).
В системах с двигателем объемом 1,6 литра нет "обратки", РДТ находится в баке, на бензонасосе и поддерживает давление в топливной магистрали 3,8 кгс/м2.

Модуль зажигания . Всё что можно здесь сделать с модулем зажигания это проверить наличие искры. Следует обратить внимание на то, что не в коем случае нельзя оставлять высоковольтный провод без нагрузки в момент прокрутки двигателя, т.е. без свечи - иначе модуль зажигания выйдет из строя. Не подойдёт и вариант когда свеча кладётся на двигатель(ненадёжная "масса"). Необходимо обеспечить надёжный контакт корпуса свечи с "массой", например посредством провода. Ваш двигатель не заведётся точно при прокрутке, если Вы нажмёте на педаль газа до упора(в этом режиме блокируется топливоподача).Итак, выкручиваете свечу, обеспечиваете надёжный контакт с "массой", нажимаете на гашетку до упора и держите, включаете стартер и смотрите наличие искры. Правда одному несколько неудобно, но извратиться можно-проверено. Если есть мултиметр можно проверить наличие +12В при включении зажигания на контакте D разъема (см. схему ЭСУД), снятого с модуля зажигания.
В модуле зажигания расположены две катушки зажигания и два устройства согласования. Контроллер управляет модулем подавая сигнал по цепям управлением зажиганием одновременно на 1 и 4 цилиндр и соответственно 2 и 3 цилиндр. Такое распределение искры по цилиндрам называется методом холостой искры. Модуль зажигания, как и большинство остальных датчиков и ИМ может иметь множество промежуточных "полурабочих" состояний и при диагностике подлежит самому пристальному вниманию.

Регулятор холостого хода. Его можно услышать если открыть капот и попросить кого - нибудь включить и выключить зажигание. Двигатель РХХ характерно жужжит приблизительно 2-3 сек. Если есть омметр можно померить сопротивление обмоток двигателя РХХ сняв с него разъём. Rdc=Rba=40...80 ОМ (см. схему ЭСУД).
Регулятор холостого хода (РХХ) служит для поддержания установленных оборотов двигателя на холостом ходу. РХХ расположен на дроссельном патрубке и представляет собой шаговый двигатель анкерного типа с двумя обмотками. При подаче импульса на одну из них игла делает один шаг вперед, на другую - шаг назад. Управление двигателем производит Электронный Блок Управления (ЭБУ). В системах "Микас" он называется несколько иначе - Регулятор Добавочного Воздуха (РДВ). Конусная часть штока регулятора холостого хода располагается в канале подачи воздуха для обеспечения регулирования холостого хода двигателя. Шток регулятора выдвигается или втягивается в зависимости от управляющего сигнала контроллера. Регулятор холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством воздуха, подаваемым в обход закрытой дроссельной заслонки. В полностью выдвинутом положении (выдвинутое до упора положение соответствует "О" шагов), конусная часть штока перекрывает подачу воздуха в обход дроссельной заслонки. При открывании клапан обеспечивает расход воздуха, пропорциональный перемещению штока (количеству шагов) от своего седла. Полностью открытое положение клапана соответствует перемещению штока на 255 шагов. На прогретом двигателе контроллер, управляя перемещением штока, поддерживает постоянную частоту вращения коленчатого вала на холостом ходу независимо от состояния двигателя и от изменения нагрузки.

Форсунки.Это обыкновенный электромагнитный клапан. Можно проверить сопротивление омметром, сняв разъём с форсунки. Оно должно быть в пределах 11...15 Ом. Форсунка может быть прихвачена, т.е. в закрытом состоянии пропускать топливо. Определить это можно только при наличии спецоборудования, но предварительно сделать вывод об этом можно если у Вас заливает свечу(топливо поступает в цилиндр после выключения зажигания,двигатель плохо пускается).
Контроллер включает электромагнитный клапан , который открывает шариковый клапан, пропуская топливо через клапан и направляющую пластину, обеспечивающую распыление топлива. Направляющая пластина имеет отверстия, которые управляют струёй топлива, образуя собой конический факел тонко распылённого топлива на выходе из форсунки. Факел топлива направлен на впускной клапан. До попадания топлива в камеру сгорания происходит его испарение и перемешивание с воздухом. Автомобили ВАЗ комплектовались форсунками Bosch, Siemens, GM.
Форсунки полностью взаимозаменяемы, т.к имеют одинаковую производительность. Кроме того допускается частичная замена. Например на рампе с форсунками Бош можно поменять одну или две форсунки GM. Совет - приобретать форсунки Бош, так как они более надежны, чем GM, хотя как ни странно, форсунки Бош сделаны по лицензии в России. Форсунки GM особенно "боятся" длительные простои автомобиля 6 и более месяцев. Металлические части форсунки начинают окислятся при контактировании с некачественным бензином и она отказывает. Если в ходе диагностики форсунок GM выявится более одной неисправной форсунки (чистка не помогает), лучше менять все на новые Бош. Чистка форсунок дает эффект при пробеге около 40 тыс. км.

Электровентилятор.То что он не работает трудно не заметить-двигатель закипит. Контроллер включает реле электровентилятора при достижении двигателем определённой температуры (сигнал с датчика температуры).Так что если он у Вас не включается значит либо:
Контроллер не выдаёт сигнал на включение реле электровентилятора
Реле не включается
Электровентилятор неисправен
Причин по которым это происходит может быть много: от простого отсутствия контакта до неисправности контроллера. Грешить на датчик температуры не стоит, потому-что при его неисправности контроллер сразу зажигает лампу Check Engine.Можно вынуть реле и подав на него питание проверить его работоспособность. Можно сняв разъём с вентилятора подать на него питание. Так методом исключения обнаружится неисправный узел.

Переходим к датчикам.

Датчик положения дроссельной заслонки(ДПДЗ). ДПДЗ-обыкновенный переменный резистор, а следовательно можно измерив его сопротивление сделать вывод о его работоспособности: Rав=10,2кОм,Rac=8,5кOм,Rвс=1,95кОм (см. схему ЭСУД).Разброс +20% -20% -это нормальная ситуация.Типичный признак неисправности ДПДЗ-нестабильность холостого хода,рывки при наборе оборотов.
Установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки. Датчик представляет собой потенциометр, на один конец которого подаётся плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идёт выходной сигнал к контроллеру. Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонки оно ниже 0.7 В. Когда заслонка открывается, напряжение на выходе датчика растёт и при полностью открытой заслонки должно быть более 4 В. Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя). Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.
Самый ненадёжный элемент в системе, если он отечественный. Датчик Вы поменяете до 20-ти тыс., хотя есть случаи, где датчик "ходил" до 80 тыс. км. Были случаи, когда датчик отказывал через 200 км. пробега нового автомобиля. Датчик крайне тяжело менять без специального качественного инструмента. Дело в том что нижний винт крепления неудобно отворачивать обычной отвёрткой, да ещё при закручивании на заводе винты смазывают герметиком, который так их прихватывает, что при отворачивании нередко срывает шляпку винта. Нередко для замены датчика мы снимаем весь дроссельный узел в сборе. В худшем варианте приходится просто выламывать датчик, но только в том случае если мы уверены что это 100% неисправный датчик. Разумеется предпочтительнее ставить импортный датчик дроссельной заслонки, хоть он и дороже в 3 раза. Он практически "не убиваемый".

Датчик детонации(ДД). Тут как говориться медицина безсильна. При его неисправности контроллер зажигает лампу Check Engine и заносит в память код неисправности.Повышенная детонация может быть косвенным признаком его неисправности.
Датчик Детонации (ДД) служит для обнаружения детонационных ударов в ДВС и расположен на блоке. Существует две разновидности ДД - резонансные и более современные широкополосные. В настоящее время резонансные ДД больше не устанавливаются серийно.

Датчик положения коленвала(ДПК).ДПК- единственный из датчиков при неисправности которого Вы уже никуда не поедите-двигатель просто не заведётся. Это и есть основной признак по которому определяется неисправность ДПК. Контроллер зажигает лампу Check Engine. Для пущей верности можно проверить омметром его сопротивление при отключенном разъёме. Оно равно 550...750 Ом (см. схему ЭСУД).
ДПК подаёт в контроллер сигнал частоты вращения и положения коленчатого вала. Этот сигнал представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала. На базе этих импульсов контроллер управляет форсунками и системой зажигания. ДПК установлен на крышке масляного насоса на расстоянии около 1+0,4мм от задающего диска (шкива) коленчатого вала. Шкив коленчатого вала имеет 58 зубцов расположенных по окружности. Зубцы равноудалены и расположены через 6°. Для генерирования "импульса синхронизации" два зуба на шкиве отсутствуют. При вращении коленчатого вала зубцы диска изменяют магнитное поле датчика, создавая наведенные импульсы напряжения. По импульсу синхронизации от датчика положения коленчатого вала, контроллер определяет положение и частоту вращения коленчатого вала и рассчитывает момент срабатывания форсунок и модуля зажигания. Провод ДПК защищён от помех экраном, замкнутым на массу через контроллер. ДПК - самый главный из всех датчиков, при неисправности которого двигатель работать не будет. Этот датчик рекомендуется всегда возить с собой. Датчик ДПК - полярный прибор - при нарушении проводки следует подключать соблюдая полярность. В "обратном" включении двигатель не заведется.

Датчик массового расхода воздуха(ДМРВ). ДМРВ может быть виноват в неустойчивой работе двигателя, затруднённом пуске, задержках, рывках, провалах, недостаточной мощности и приемистости и не только. Поэтому его трудно диагностировать без приборов и специнструмента. При отсоединённой колодке можно померить сопротивление между контактом 5 (см. схему ЭСУД) и массой. Оно д.б. 4...6 кОм.Если снять разъём с ДМРВ, то двигатель не опускает обороты ниже 1500, это может служить дополнительной информацией при поиске неисправности.
В датчике массового расхода воздуха (ДМРВ) находятся температурные датчики и нагревательный резистор. Проходящий воздух охлаждает один из датчиков, а электронный модуль преобразует эту разность температур датчиков в выходной сигнал для контроллера. В разных вариантах систем впрыска топлива могут применятся датчики массового расхода воздуха двух типов. Они отличаются по устройству и по характеру выдаваемого сигнала, который может быть частотный или аналоговый. В первом случае в зависимости от расхода воздуха меняется частота сигнала, а во втором случае - напряжение. Контроллер использует информацию от датчика для определения длительности импульса открытия форсунок.
Очень "боится" воды попавшей при преодолении высокой водной преграды (двигатель засосал часть воды в впускную трубу через датчик). На автомобили ВАЗ устанавливались несколько типов датчиков: GM, BOSCH, SIEMENS и Российский. В 1999-2004 гг. на конвеере ВАЗа устанавливались два типа датчиков Д037 и Д004. Эти датчики выдают разные параметры на одинаковом расходе воздуха.
Исторически первым был введен датчик 004 в проектах с калибровками M1V13O54,M1V13R59 и M7V03E65. Первые два проекта легко определяются по внешнему виду т.к.они без нейтрализатора и в них использовался резонанасный датчик детонации. Затем эти два первых проекта были прекращены в производстве и все дальнейшие проекты (с калибровками последующих серий) стали укомплектовываться датчиками 037. Одновременно с прекращением двух вышеназванных проектов проект M7V03E65 также стал комплектоваться 037 датчиком. Модификация 037 отличается от 004 доработкой внутреннего воздушного канала датчика с целью убрать пульсации воздушного потока, которые возникают в 004 даже при ламинарном воздушном потоке в впускном коллекторе. При этом характеристика 037 сместилась по сравнению с 004. Считается, что при наличии обратной связи по кислороду эти отличия компенсируются, именно поэтому калибровка проекта M7V03E65 при смене датчика не была изменена.
С октября 2004 г. основным датчиком является 116. Модификация 116 предназначена для проектов с контроллерами нового поколения Bosch М7.9.7 и его отечественными аналогами - Январь 7.2, параллельное производство которых начато фирмами Итэлма и Автэл. Тарировка датчика и его конструкция отличаются от 004 и 037.
Принцип работы Микромеханический расходомер массы воздуха с использованием нагревательной пленки. Нагревательные и измерительные резисторы выполнены в виде тонких платиновых слоев, нанесенных на кристалл кремния. Вычисление объема воздуха произврдится по разности температур между дaтчиками.

Датчик скорости(ДС).Неисправен если отсутствует прирост оборотов холостого хода при движении на нейтральной передаче,прирост составляет 150 оборотов по сравнению с ХХ когда автомобиль стоит.На авто семейства 2110 может не работать спидометр,т.к. в нём используются импульсы с датчика скорости.Контроллер зажигает лампу Check Engine.
Принцип действия датчика основан на эффекте Холла. Датчик выдаёт на контроллер импульсы напряжения частотой, пропорциональной скорости вращения ведущих колёс. Датчики скорости различаются по присоединительным разъёмам к колодке жгута. Квадратный разъём применяется в системах БОШ. Датчик с круглым разъёмом применяется в системах Январь 4 и GM. Все датчики 6-ти импульсные. 10-ти импульсный датчик применяется для маршрутных компьютеров карбюраторных Самар. Сигнал на тахометр инжекторных автомобилей поступает с контроллера системы впрыска (ЭБУ) и используется только для определения режима разрешения блокировки топливоподачи на ПХХ.
Устанавливать привод спидометра в тех моделях, где он есть, в коробку передач нужно очень аккуратно, при малейшем перекосе сомнутся пластмассовые зубья ведущей шестерни привода спидометра и - полная разборка коробки передач неизбежна

Датчик температуры охлаждающей жидкости(ДТОЖ). Его сопротивление зависит от температуры. По таблице (смотри документацию по ремонту) можно легко проверить датчик, измеряя его сопротивление мультиметром.
Датчик температуры охлаждающей жидкости представляет собой термистор, т.е. резистор, электрическое сопротивление которого изменяется в зависимости от температуры. Термистор, расположенный внутри датчика имеет отрицательный температурный коэффициент сопротивления, т.е. при нагреве его сопротивление уменьшается. Высокая температура вызывает низкое сопротивление (70 Ом при 130град.) датчика, а низкая температура охлаждающей жидкости - высокое сопротивление (101400 Ом при -40град.).При замене датчика не забудьте отвинтить крышку-клапан с расширительного бачка системы охлаждения чтобы сбросить давление. Зависимость сопротивления датчика температуры охлаждающей жидкости от температуры (ориентировочно) .
температура (град.С) - сопротивление (Ом)
(100-177)*(90-241)*(80-332)*(70-467)*(60-667)*(50-973)*(45-1188)*(40-1459)*(30-2238)*(25-2796)* (20-3520)*(15-4450)*(10-5670)*(5-7280)*(0-9420)*(-5-12300)*(-10-16180)*(-15-21450)*(-20-28680)* (-30-52700)*(-40-100700)
Датчик практически не ломается, но бывает врёт. Часто бывает - перетираются провода у основании разъёма так, что даже припаять не к чему. При замене датчика открутите пробку расширительного бачка, что бы снять внутреннее давление в системе охлаждения.

Датчик фаз.Ставится на 16-ти клаппанные моторы. Благодаря ДФ достигается возможность реализации подачи топлива каждой форсункой один раз за два оборота коленчатого вала(фазированный впрыск). При выходе его из строя контроллер реализует режим попарнопараллельной подачи топлива (каждая форсунка срабатывает один раз за оборот коленчатого вала. Без диагностических приборов не обойтись.Контроллер зажигает лампу Check Engine.
Датчик фаз устанавливается на двигателе ВАЗ-2112 в верхней части головки блока цилиндров за шкивом впускного распредвала. На шкиве впускного распредвала расположен задающий диск с прорезью. Прохождение прорези через зону действия датчика фаз соответствует открытию впускного клапана первого цилиндра. Контроллер посылает на датчик фаз опорное напряжение 12В. Напряжение на выходе датчика фаз циклически меняется от значения близкого к 0 (при прохождении прорези задающего диска впускного распредвала через датчик) до напряжения близкого напряжению АКБ (при прохождении через датчик кромки задающего диска). Таким образом при работе двигателя датчик фаз выдает на контроллер импульсный сигнал синхронизирующий впрыск топлива с открытием впускных клапанов.

Датчик кислорода(ДК)(Лямбда-Зонд).Можно проверить сопротивление нагревателя ДК, отсоеденив разъём от датчика: Rвd=0,5...10 Ом. Так-же можно измерить на снятом разъёме и при включеном зажигании опорное напряжение контроллера: Uca=0,45В (см. схему ЭСУД).
Чувствительный элемент датчика кислорода находится в потоке отработавших газов. При достижении датчиком рабочих температур, превышающей 360 град. С, он действует как генератор, выдавая быстро изменяющееся напряжение, колеблющееся между 10 и 1000 милливольт. Это выходное напряжение зависит от концентрации кислорода в отработавших газах в сопоставлении с опорными данными о содержании кислорода в атмосфере, поступающими с элемента конструкции датчика, служащего для определения концентрации атмосферного кислорода. этот элемент представляет собой полость, соединяющуюся с атмосферой через небольшое отверстие в металлическом наружном кожухе датчика. Когда датчик находится в холодном состоянии он не выдаёт никакого напряжения или медленно изменяющиеся напряжение которое нельзя использовать. Кроме того с холодном состоянии внутреннее электрическое сопротивление датчика чрезвычайно высоко и составляет много миллионов Ом. Поскольку для эффективной работы датчик должен иметь температуру не менее 360 град. С, он снабжен установленным внутри электрическим нагревательным элементом, служащим для быстрого подогрева датчика после пуска двигателя. Питание на данный нагревательный элемент подаётся из системы электропитания автомобиля при включённом зажигании автомобиля. Электронный блок управления постоянно подаёт на цепь датчика стабильное опорное напряжение 450 милливольт с очень низким током. Когда датчик имеет холодное состояние и не выдаёт никакого напряжения, ЭБУ "видит" только указанное стабильное опорное напряжение. По мере прогрева датчика при работающем двигателе его внутреннее сопротивление уменьшается, и он начинает выдавать быстро меняющееся напряжение, которое перекрывает выдаваемое ЭБУ стабильное опорное напряжение. Когда ЭБУ "видит" изменяющееся напряжение, ему становится известным что датчик прогрелся, и его выход готов для применения в целях "тонкой настройки". ЭБУ следит за выходами за пределы диапазонов среднего напряжения (приблизительно 300-600 милливольт) для принятия решения о переходе на режим управления по замкнутой петле обратной связи.

Шкиф коленвала.На нём расположен задающий диск по которому с помощью ДПКВ контроллер определяет положение коленвала.Они бывают двух типов:цельнометаллические и с резиновым демпфером. Если у Вас первый,то за него можно не беспокоиться - никогда не подведёт.Ну а если второй,то нужно быть готовым к тому,что его может провернуть (проворачивается зубчатое колесо относительно шкива). В худшем случае (сильно провернуло) Вы уже никуда не поедите-контроллер будет получать неверную информацию о положении коленвала. Бывают провороты незначительные, машина заводится, едет но великоват расход топлива, провалы.На месте ли задающий диск можно легко проверить. При совпадении меток на распредвалу с меткой на маховике(она дублирует метку на коленвале), между двумя отсутствующими зубами на задающем диске и осью ДПКВ должно умещаться 19-20 зубов задающего диска. Т.е. выставляем метки и считаем зубья-всё просто. Это справедливо как для 8-ми клаппанного двигателя, так и для 16-ти клаппанного.

Итак, при включении зажигания контроллер включает главное реле которое подаёт напряжение +12 В на реле бензанасоса и реле вентилятора. Параллельно этому контроллер подаёт "массу" на реле бензонасоса, и он включается на 5-6 секунд. Если за это время не поступил сигнал с датчика положения коленвала, т.е. не началась прокрутка двигателя, контроллер отключает реле бензонасоса. Как только появится сигнал с ДПКВ бензонасос заработает. По сигналу с ДПКВ контроллер расчитывает момент зажигания и топливоподачи.Во время запуска двигателя реализуется асинхронная топливоподача - т.е. без учёта сигнала с ДПКВ. Мотор запустился. В зависимости от показаний от датчика температуры контроллер управляет регулятором холостого хода (РХХ) и длительностью импульса впрыска (открытия форсунки). Чем ниже температура тем больше обороты прогрева (при -30 примерно 1650об/мин). На разных режимах работы двигателя: ХХ, принудительный ХХ, полная мощность и т.д. контроллер расчитывает длительность впрыска, угол опережения зажигания в зависимости от сигналов от датчиков по двухмерным, трёхмерным таблицам находящимся в калибровках прошивки.
Главное реле системы впрыска или главное реле(ГР). Оно подаёт питание +12В на все датчики (которым требуется) и реле системы впрыска. Управление ГР осуществляет контроллер подавая "массу" на катушку ГР. Расположено в семействе 2108 под бордачком вместе с реле бензонасоса и вентилятора. В семействе 2110 под бородой, доступ открывается после снятия левой крышки(со стороны водителя) бороды.



http://amastercar.ru/articles/injection_fuel_2.shtml

Для понимания того, как работает система питания впрыскового автомобиля, нужно, во-первых, иметь желание разобраться в этом, а во-вторых - нужна информация, которой очень и очень мало. Именно поэтому мы и попробуем сейчас в общих чертах дать описание функционирования системы впрыска TCCS (Toyota Computer Control System) фирмы Тойота, рассказать, как это все работает, и какие действия может предпринять автовладелец в случае, когда что-то не работает или работает не так.

Прежде всего, хотелось бы напомнить основные принципы работы любой современной автомобильной электронной системы впрыска. В двух словах процесс работы системы впрыска выглядит так: масса воздуха, поступающая в двигатель, измеряется датчиком расхода воздуха, эти данные передаются компьютеру, который на основе этой информации, а также на основе некоторых других текущих параметров работы двигателя, таких, как температура двигателя, температура воздуха, скорость вращения коленчатого вала, степень открытия дроссельной заслонки (и скорость ее открытия), расчитывает необходимое количество топлива, которое нужно сжечь в данном количестве воздуха. После этого компьютер подает на форсунки электрический импульс нужной длительности, форсунки открываются, и топливо, находящееся под давлением в топливной магистрали, впрыскивается во впускной коллектор. Все, дело сделано.

Как все просто, скажут многие и, в общем-то, будут правы - в системе впрыска есть одна-единственная сложность - это сложная программа, находящаяся в памяти компьютера и составленная таким образом, чтобы учитывать все разнообразие режимов работы двигателя и внешних условий, в которых ему приходится работать, а механические же узлы и составные части ничего сложного из себя не представляют и их можно перечислить по пальцам: это бензонасос, перепускной клапан топливной магистрали, клапан поддержания холостых оборотов (он же зачастую отвечает за прогревные обороты и компенсацию падения оборотов при включении кондиционера и других электроприборов), форсунки. Ну и, естественно, датчики. Один из таких датчиков, о котором в автомобильной среде ходит очень много разных слухов и "гаражных баек", является датчик кислорода или, иначе, лямбда-зонд. Чуть позже мы уделим ему особое внимание.

Итак, рассмотрим процесс функционирования системы TCCS. Следует сразу сказать, что автомобильные системы впрыска бывают двух типов - с обратной связью и без нее. Системами с обратной связью оснащаются автомобили, предназначеные для рынков развитых стран, таких как США, Япония, европейские страны, где нормы на содержание токсичных веществ в выхлопных газах очень строги и к автомобилям предъявляются соответствующие требования. В таких системах обязательно есть два компонента - каталитический нейтрализатор и лямбда-зонд. В системах без обратной связи ни лямбда-зонда, ни, как правило, нейтрализатора нет.

Система TCCS не является исключением и также выпускается в двух вариантах. Мы начнем с более сложного и передового варианта с обратной связью, тем более, что автомобили, приходящие из Японии, имеют именно этот вариант системы, ведь требования к чистоте выхлопа в Японии очень высоки.
Компьютер (ECU)

Начнем мы, пожалуй, с компьютера управления, который общепринято называть ECU (Electronic Control Unit). В памяти компьютера находятся собственно программа управления и набор так называемых "карт" (maps), в которых отражена необходимая для работы программы информация. При этом сама программа более-менее стандартна для любого двигателя, а вот карты, используемые ею, уникальны для каждой модели и каждой модификации двигателя. Для большей наглядности можно представить себе простейшую программу, которая работает с двумя картами, одна из которых представляет собой трехмерную таблицу, в которой по горизонтали (вдоль оси X) заданы значения массы поступающего воздуха, по вертикали (вдоль оси Y) - значения оборотов двигателя, а вдоль оси Z - значения углов открытия дроссельной заслонки. На пересечении всех трех колонок и столбцов таблицы проставлены значения количества топлива, которое необходимо впрыснуть при данных условиях работы двигателя. Во второй карте, двумерной, заданы соответствия между количеством топлива и временем открытия форсунок, в результате из этой карты программа может узнать то, для чего и городился весь этот огород - длительность электрического импульса, который должен быть подан на форсунки. В процессе работы программа каждые несколько миллисекунд опрашивает датчики, сравнивает полученные значения с заданными в первой карте, выбирает из соответствующей ячейки содержащееся там значение количества топлива, потом переходит ко второй карте и выбирает исходя из этого значения требуемое время открытия форсунок. Далее следует импульс на форсунки - все, цикл завершен. Описанный процесс отличается от реального тем, что на самом деле таких карт больше и в них отражены взаимные зависимости гораздо большего числа параметров, чем было перечислено, в том числе нагрузка на двигатель, температура двигателя, температура воздуха и даже высота над уровнем моря. Но цель работы программы управления та же - конечным результатом сбора и обработки данных от датчиков должна быть длительность электрического импульса на форсунку.

Таким образом, вся сложность заключается не в написании собственно программы, которая всего-то и делает, что сверяется последовательно с несколькими картами и в результате "добирается" до некоторого значения, а в самих картах, которые должны быть очень точными и подобраны под конкретную модификацию двигателя.

Кроме этого, ECU системы TCCS управляет также и углом опережения зажигания, зависимость которого от различных текущих параметров работы двигателя также задается соответствующими картами.
Обратная связь

Обратная связь в системе TCCS, как и в любой другой системе впрыска, обеспечивается лямбда-зондом (датчиком кислорода). Необходимость ее обусловлена тем, что как бы ни были хороши и точны карты, находящиеся в памяти ECU, каждый экземпляр двигателя все равно в той или иной мере отличается от остальных и требует индивидуальной подстройки топливной системы. В процессе эксплуатации двигателя также происходят изменения, связанные с его старением и износом, и которые тоже было бы неплохо компенсировать. Кроме этого, сами карты могут быть изначально составлены неоптимально для некоторых сочетаний внешних условий и режимов работы двигателя и, таким образом, требовать корректировки. Именно эти задачи и позволяет решить наличие обратной связи. Но главная цель при решении всех этих задач - это достижение наиболее полного сгорания горючей смеси в цилиндрах двигателя для получения наилучших характеристик его токсичности. Известно, что оптимальным для полного сгорания топлива является соотношение воздух/топливо равное 14.7:1. Это отношение называют "стехиометрическим" или, иначе, "коэффициент лямбда" (именно отсюда и пошло название "лямбда- зонд").

Выглядит обратная связь так. После того, как компьютер определил необходимое количество топлива, которое нужно впрыснуть в текущий момент работы двигателя исходя из текущих условий и режима его работы, топливо сгорает и выхлопные газы поступают в выпускную систему. В этот момент с датчика кислорода считывается информация о содержании кислорода в выхлопных газах, на основании чего можно сделать вывод, а так ли все прошло, как было расчитано, и не требуется ли коррекция состава горючей смеси. Образно говоря, компьютер постоянно проверяет свои расчеты по конечному результату, информацию о котором он получает от датчика кислорода, и, если это требуется, выполняет окончательную точную подстройку состава горючей смеси. В англоязычной литературе эта процедура обычно именуется "short term fuel trim". Но так происходит не всегда - в некоторых режимах работы двигателя компьютер игнорирует информацию от датчика кислорода и руководствуется только своими собственными расчетами. Давайте посмотрим, когда же это происходит.
Режимы управления

Компьютер любой системы управления впрыском с обратной связью, в том числе и TCCS, в процессе работы может находиться в одном из двух режимов управления - либо в режиме замкнутого контура (closed loop), когда он использует информацию датчика кислорода в целях точной корректировки, либо в режиме разомкнутого контура (open loop), когда он игнорирует эту информацию. Ниже мы рассмотрим основные режимы работы двигателя и режимы управления.

1. Запуск двигателя. В момент запуска требуется, в зависимости от температуры как самого двигателя, так и окружающего воздуха, обогащенная горючая смесь с повышенным процентным содержанием топлива. Это всем известный факт, характерный вообще для всех бензиновых двигателей внутреннего сгорания, как карбюраторных, так и двигателей с впрыском, поэтому мы не станем подробно останавливаться на причинах. Скажем только, что соотношение воздух/топливо в этом режиме варьируется в среднем от 2:1 до 12:1. В этом режиме компьютер системы TCCS работает в режиме разомкнутого контура.

2. Прогрев двигателя до рабочей температуры. После запуска двигателя компьютер системы TCCS постоянно проверяет текущую температуру двигателя и в зависимости от этого параметра производит расчет состава горючей смеси, а также устанавливает требуемую величину прогревных оборотов посредством воздушного клапана ISC (Idle Speed Control). В процессе прогрева двигателя с ростом температуры соотношение воздух/топливо изменяется компьютером в сторону обеднения, а прогревные обороты также уменьшаются. В это же время происходит разогрев датчика кислорода в выпускном коллекторе до рабочей температуры. Компьютер при этом работает в режиме разомкнутого контура.

3. Холостой ход. По достижении заданной температуры двигателя и при условии достаточного для работы разогрева датчика кислорода (датчик кислорода начинает выдавать правильные показания только при температуре от 300C и выше) компьютер переключается в режим замкнутого контура и начинает использовать показания датчика кислорода для поддержания стехиометрического состава горючей смеси (14.7:1), обеспечивающего наименьший уровень содержания токсичных веществ в выхлопных газах.

4. Движение с постоянной скоростью, плавное увеличение или уменьшение скорости. В этом случае компьютер TCCS также находится в режиме замкнутого контура и использует показания датчика кислорода. Вы можете раскрутить двигатель хоть до 6500 об/мин, наполовину нажав педаль газа, но компьютер все - равно будет оставаться в режиме замкнутого контура, обеспечивая состав горючей смеси в пределах примерно от 14.5:1 до 15.9:1.

5. Резкое ускорение. Как только Вы нажимаете педаль газа "в пол" и полностью открываете дроссельную заслонку - компьютер безоговорочно переходит в режим разомкнутого контура. Под нагрузкой (а компьютер всегда в состоянии определить, велика ли нагрузка на двигатель) компьютер может переключиться в режим разомкнутого контура несколько раньше - уже при открытии дроссельной заслонки на 68 или более процентов от ее хода. При этом он будет поддерживать состав горючей смеси в пределах от 11.9:1 до 12:1 для получения большей мощности.

6. Принудительный холостой ход (торможение двигателем). Компьютер также переходит в режим разомкнутого контура в случаях, когда текущие обороты двигателя превышают величину оборотов холостого хода, а дроссельная заслонка полностью закрыта - например, когда Вы движетесь под уклон, убрав ногу с педали газа и не выключив передачу. При этом компьютер обеспечивает обедненный состав горючей смеси.

Таким образом, мы видим, что большую часть времени компьютер TCCS находится в режиме замкнутого контура, который обеспечивает оптимальный состав горючей смеси. Более того, находясь в этом режиме, компьютер "самообучается", корректируя и модифицируя карты, используемые в режиме разомкнутого контура, адаптируя их к текущим условиям эксплуатации и состоянию двигателя. Т.е., если, скажем, компьютер замечает, что в режиме замкнутого контура для достижения оптимального сгорания ему приходится все время обогащать топливо - воздушную смесь на, скажем, 5% относительно базовых значений, прописанных в соответствующих картах, то через некоторое время, когда он удостоверится в стабильности этого корректирующего коэффициента, он соответствующим образом модифицирует сами карты, тем самым влияя и на смесеобразование в режиме разомкнутого контура. Это и есть тот самый процесс "самообучения", о котором тоже ходит столько слухов. "по-научному" (IMG:https://nubira-club.com/style_emoticons/default/wink.gif) он называется "long term fuel trim". Следует заметить, что модифицированные карты сохраняются только в энергозависимой памяти компьютера, поэтому после отключения аккумулятора восстанавливаются заводские значения этих карт, и компьютер должен "самообучаться" заново.

Все было бы просто замечательно, если бы не один фактор, портящий эту красивую картину - лямбда-зонд имеет обыкновение выходить из строя в результате заправок этилированным бензином. В реальной жизни это приводит к тому, что рано или поздно после пробега по нашим дорогам система TCCS лишается своей способности к адаптации под текущие условия и работает строго по тем картам, которые изначально находились в памяти компьютера, постоянно находясь в режиме разомкнутого контура. Естественно, что ничего хорошего из этого не получается, ведь большинство автомобилей к тому времени, когда они попадают к нам, уже немало побегали по японским дорогам, и двигатели их, увы, уже не новые. Впрочем, практика показывает, что и ничего особенно плохого тоже не происходит. Более того, система TCCS "нативных" японских Тойот в случае выхода из строя лямбда-зонда даже не зажигает на панели лампочку "check engine" в отличие от Тойот для американского и/или европейского рынков.

Кстати, следует заметить, что каталитический нейтрализатор (именуемый в народе "катализатор") и лямбда-зонд - это совершенно разные устройства, хотя их и можно назвать "сладкой парочкой" - как правило, если в машине есть лямбда-зонд - то есть и нейтрализатор, и наоборот. Оба эти устройства служат одной и той же цели - снижению уровня токсичности выхлопа, но выполняют каждое свою часть работы: лямбда-зонд помогает системе управления впрыском готовить оптимальную с точки зрения полноты сгорания горючую смесь, а нейтрализатор эту смесь дожигает.
Каталитический нейтрализатор

Нейтрализатор, который представляет собой керамические "соты", покрытые активным слоем, способным дожигать остающиеся в выхлопных газах частички топлива, также выходит из строя после нескольких заправок этилированным бензином. Выходит из строя - это означает, что он теряет способность к дожиганию несгоревших частичек топлива. Известны случаи, когда соты катализатора оплавлялись, забивались нагаром и такой нейтрализатор уже создавал серьезную помеху на пути выходящих из двигателя выхлопных газов. Но следует сказать, что сама по себе заправка, даже неоднократная, этилированным бензином к такому результату не приведет. Причина оплавления нейтрализатора - это работа двигателя в течение длительного времени на обогащенной (или богатой) смеси, к чему может привести как выход из строя лямбда-зонда, так и неисправности в системе питания и зажигания.
Принцип работы датчика кислорода

Наиболее распространенный тип - циркониевый кислородный датчик. По сути дела он является переключателем, резко меняющим свое состояние на рубеже 0.5% кислорода в составе выхлопных газов. Это количество кислорода соответствует идеальному стехиометрическому соотношению воздух/топливо 14.7:1.

Обычно интерфейс датчика устроен таким образом: прогретый датчик (более 300 градусов Цельсия) при количестве кислорода менее 0.5% (богатая смесь), являясь слабым источником тока, выставляет на сигнальном выходе напряжение в диапазоне от 0.45 до 0.8 вольта, а при количестве кислорода более 0.5% (бедная смесь) - от 0.2 до 0.45 вольта. Какой точно уровень напряжения при этом - роли не играет, учитывается его положение относительно средней линии. Если ECU видит сигнал бедной смеси - топливо добавляется. Если в следующий измерительный период ECU видит сигнал богатой смеси - то подача топлива уменьшается. Таким образом состояние системы постоянно колеблется вокруг оптимальной величины и подача топлива настраивается по практическим результатам сгорания. Это позволяет системе адаптироваться к различным условиям работы. Частота колебаний напряжения на датчике кислорода составляет примерно 1-2 Гц на холостых оборотах и 10-15 Гц при 2000- 3000 об/мин.

Так как датчик работает надежно только в хорошо прогретом состоянии, то ECU системы TCCS начинает замечать его показания только после определенного уровня прогрева двигателя. Для ускорения прогрева датчика в него зачастую монтируют электрический подогреватель. Бывают датчики с одним проводом (сигнал), бывают с двумя (сигнал, земля сигнала), с тремя (сигнал, 2 провода подогревателя), с четырьмя (сигнал, земля сигнала, 2 провода подогревателя).
Самодиагностика компьютера системы TCCS

Любая современная система впрыска имеет встроенную подсистему самодиагностики, которая позволяет определить различного рода неисправности датчиков, исполнительных механизмов и узлов системы. В результате процедуры самодиагностики компьютер вырабатывает диагностические коды, которые можно тем или иным способом извлечь из памяти компьютера и расшифровать в соответствии с таблицами. Способ извлечения этих кодов у разных производителей - разный. В системе TCCS для этого используется лампочка "Check Engine" на панели приборов, а переключение компьютера в режим вывода диагностических кодов осуществляется путем закорачивания пары контактов на диагностическом разъеме в моторном отсеке автомобиля. Диагностический разъем обычно находится вблизи левой опоры стойки передней подвески и представляет собой черную или серую коробочку с надписью "DIAGNOSIS" на крышке.

Пошаговая процедура самодиагностики:

1. Начальные условия

- напряжение в бортовой сети превышает 11 вольт

- дроссельная заслонка полностью закрыта

- трансмиссия в положении "нейтраль" (или "парковка" для автоматических трансмиссий)

- кондиционер выключен

2. Металлическим проводником (провод, разогнутая канцелярская скрепка) замкнуть контакты T (или TE1) и E1 на диагностическом разъеме.

3. Повернуть ключ зажигания в положение "ON", но не запускать двигатель стартером.

4. Считать коды путем подсчета количества миганий лампочки "Check Engine".

Считывание кодов диагностики. При считывании кодов возможны две ситуации:

1. Неисправностей не обнаружено:

- лампочка будет мигать непрерывно с интервалом в 0.25 секунды

2. Обнаружены неисправности:

- последует серия миганий с интервалом 0.5 секунды - первая цифра кода (например, пять миганий - цифра 5)

- пауза 1.5 секунды

- серия миганий с интервалом 0.5 секунды - вторая цифра кода (например, четыре мигания - цифра 4)

- в случае, если кодов больше одного - пауза 2.5 секунды

- после отображения всех кодов следует пауза в 4.5 секунды и процесс повторяется сначала

Сброс кодов диагностики. Обнаруженные коды диагностики (за исключением кодов 51 и 53) будут находиться в памяти компьютера даже после устранения неисправности. Чтобы очистить область памяти компьютера, в которой хранятся коды, нужно при заглушенном двигателе вынуть на 30-60 секунд предохранитель EFI (15A) из блока предохранителей. Коды диагностики также сбрасываются при отключении аккумуляторной батареи.

Таблица диагностических кодов. Все коды системы TCCS унифицированы и значение их одинаково для всех двигателей Toyota, но для каждого конкретного двигателя используется специфичное для него подмножество кодов. Например, код 34 может присутствовать только на двигателях, оборудованных турбонаддувом.

Сообщение отредактировал Шустрый - 30.1.2015, 12:40
Перейти в начало страницы
 
+Цитировать сообщение

Ответить в данную темуНачать новую тему
2 чел. читают эту тему (гостей: 2, скрытых пользователей: 0)
Пользователей: 0

 

Новые сообщения!
Сейчас: 13.9.2019, 15:00